Investigadores de la UGR participan en el proyecto que ha identificado neutrinos en el Detector de Corta Distancia del Laboratorio Nacional Fermi, en Estados Unidos
Los científicos granadinos han coordinado y desarrollado la simulación y los algoritmos de reconstrucción de la luz de centelleo y su sistema de detección dentro del experimento, además de liderar otros estudios
Un equipo multidisciplinar e internacional de 250 científicos ha identificado las primeras interacciones de neutrinos en el Detector de Corta Distancia del Laboratorio Nacional Fermi (Fermilab) del Departamento de Energía de los Estados Unidos. Esta detección de neutrinos es el resultado de una década de planificación, creación de prototipos y construcción del propio detector (SBND, por sus siglas en inglés). Investigadores de la Universidad de Granada, en concreto del departamento de Física Teórica y del Cosmos, han formado parte de este equipo desde el inicio.
Diego García Gámez, miembro de este equipo granadino, ha destacado la contribución de la UGR, que ha supuesto “coordinar y desarrollar tanto la simulación como los algoritmos de reconstrucción de la luz de centelleo y su sistema de detección dentro del experimento, además de liderar estudios sobre búsqueda de hiperones, producción de piones en procesos de corriente cargada y producción coherente de mesones”.
García Gámez explica que, en este momento, el Modelo Estándar es la mejor teoría sobre el funcionamiento del universo en su nivel más fundamental, y es la guía que utilizan los físicos de partículas para calcularlo todo, desde las colisiones de partículas de alta intensidad en los aceleradores de partículas hasta las desintegraciones más raras. “Pero a pesar de ser una teoría que ha superado muchas pruebas, el Modelo Estándar está incompleto”, puntualiza. En los últimos 30 años, varios experimentos han observado anomalías que podrían indicar la existencia de un nuevo tipo de neutrino, la segunda partícula más abundante del universo. Sin embargo, a pesar de ser tan abundantes, son increíblemente difíciles de estudiar porque sólo interactúan a través de la gravedad y la fuerza nuclear débil, lo que significa que casi nunca aparecen en un detector. A día de hoy se han clasificado tres tipos, o sabores, de neutrinos: muon, electrón y tau. Estas partículas, para añadir más dificultad a su investigación, son capaces de cambiar de sabores, oscilando de muon a electrón y a tau.